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Abstract. We discuss the Lie symmetry approach to homogeneous, linear, ordinary differential
equations in an attempt to connect it with the algebraic theory of such equations. In particular,
we pay attention to the fields of functions over which the symmetry vector fields are defined and,
by defining a noncharacteristic Lie subalgebra of the symmetry algebra, are able to establish a
general description of all continuous symmetries. We use this description to rederive a classical
result on differential extensions for second-order equations.

1. Introduction

As a practical tool in the analysis of differential equations, particularly in the construction
of exact solutions, Lie symmetry algebras and groups play a prominent role. Thus, the
theory of special functions can be regarded as the representation theory of finite-dimensional
symmetry groups of the Laplace equation and other, integrable cases of Hamiltonian systems
on both finite- and infinite-dimensional spaces arise from more specialized, Hamiltonian
group actions, and there are countless applications to specific physical problems (see, for
example, [9, 10, 12]).

Lie point symmetries are continuous, one parameter Lie pseudogroups acting on the
space of dependent and independent variables, extended to the space of all derivatives,
which fix the variety defining the differential equation. They are generated by vector fields
which for a given equation, comprise a Lie algebra. Solvability of the associated Lie group
implies ‘solvability’ of the differential equation. The theory is applicable, in principle, to
any analytic class of differential equation.

One or two issues are not addressed in the classical theory outlined above. The first
is that there may be useful continuous, symmetries which are not generated by point
transformations. Such generalized, ‘dynamical’ or ‘hidden’ symmetries [13,5,11,1, 3]
may not preserve the particular choice of derived variables. They are the fully geometric
symmetries of the equation.

A second issue is that of the function spaces to which the coefficients in the vector fields
belong and over which they form a Lie algebra. Clearly the size and dimensionality of the
symmetry algebra depend on these. Consider in this context the statement often quoted from
Lie [7] that the point symmetries of a second-order equation form an algebra of maximal
dimension eight and that, if this bound is achieved, the equation is linearizable. It is possible
that by restricting the coefficients of the symmetries to given differential fields, one may
find a rich structure within the symmetry algebra and be able to deduce, for instance, the
function class of the linearizing transformation. We will see in this paper that, for linear
equations, the symmetry algebra viewed in this way sheds light on the details of the solution
space.
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In this paper we use an abstract definition of symmetry framed in terms of exterior
differential ideals over specified differential fields. This definition is too broad because it
includes, within the symmetry algebra, an infinite-dimensional characteristic subalgebra of
generalized symmetries which are, in practical terms, not useful. We are able to factorize
this out to obtain the noncharacteristic symmetry algeBga for the ideal®. This algebra
is, in general, infinite-dimensional over a specified field of constants but is also a vector
space over the field of invariants of the characteristic subalgebra over which it may be
finite-dimensional. We give the usual type of results about reducibility in terms of certain
ideals contained i®.

For a large enough extension of a differential field we then present a complete description
of Se for the general linear, homogeneous equation of degreeThis is an infinite-
dimensional algebra, over the field of constants, which is a finite-dimensional vector space
over the invariants. The description is both natural and useful as we show in going on to
apply it to the general second-order equation where we rederive a result from differential
algebra.

We should emphasize that the noncharacteristic symmetry algebra is not the point
symmetry algebra. Although it does contain a homomorphic image of the latter, it is
both larger and has a much simpler structure. Part of our motivation in studying it is to
understand the algebraic theory of differential field extensions using Lie symmetry.

For an introduction to the theory and some results of exterior differential algebra the
reader might consult [2].

2. Definitions and fundamental results

Let ko be the (algebraically closed) field of constants of the zero characteristic differential
field k with single derivation denoted by,. We denote extensions involving only this
derivation byk;, k,, etc. We denote bX = k[yo, y1, ..., y,—1] the differential polynomial

ring in the variablesyo, y1, ..., y,—1 with commuting derivationsd,, dg, 91, ..., 0,_1
satisfyingd; (y;) = &;;. Likewise, K1 = ki[yo, ¥1, ..., y»—1] €tc. The derivations on these
rings extend to their fields of fractions = k(yo, y1, ..., yn-1), K1 = k1(¥0, Y1, - - - » Yu—1)»

etc.

Let A be the exterior differential algebra of differential forms of nonzero weight @ver
Itis generated as a (finite-dimensionahvector space by one-forms ddyg, dys, . .., dy,_1.

T will be the corresponding-vector space of vector fields, that is, derivationsRofNote
that /\ is a K-algebra under exterior multiplication where&sis only a ko-algebra under
the Lie bracket of vector fields. When we wish to talk about forms or vector fields with
coefficients in one of the field extensions we will write, for example/\ and {;T.

Let ® be a differential ideal iry\. That is, in addition to being a ring ideal we have
do® C ©. We writeA < B(A<B) whenA is a (proper) differential ideal a8. We use< (<)
similarly for (proper) vector subspaces. For the purposes of this paper we assur®eishat
finitely generated by one-fornts, 6, ..., 6,, linearly independent ovet in an open subset
of C"*1, which is certainly the case for ideals associated with ordinary differential systems
away from singular pointsr is therank of ®. Thus, there exist elements (one-forms)
I'/ € A\ such that,

do; =Y T/ A6 i=1...,r @)
j=1

This is the Frobenius integrability condition.
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With the differential ideal® we associate twaég-subalgebras of’, the Lie symmetry
algebra,Lg, and the characteristic algebtdy. Lx is the Lie derivative operator.

Definition 1. The Lie symmetry algebraf © in T is
Lo={XeT|LxO C B}.
Definition 2. The characteristic algebraof ® in T is
Xo={X eT|X|O C O).
It is evident that these are indeggl algebras from the relations,
Lix.y) = [Lx. Ly] 2
[X,Y]10=X(Y|0)—Y(X|0)—dI(X,Y) 3)
6 being any one-form im® and the closure condition (1). If we denote By the set
{f € RIX(f) =0,VX € Xg}, thenLg is akg-algebra but arfig-vector space. Likewise,

Xo is a R vector space and also has ag-algebra structure. The following lemma gives
some results on the, K andJe dimensions of these algebras or vector spaces.

Lemma 1.For a R-vector spaceye is finite-dimensional. Fokg-algebras,Lg and Xg
are infinite-dimensional. For afig-algebra, X is finite-dimensional if and only ifR is
algebraic oveflg.

Proof. If the R-linearly independent elementg, 6, ..., 6, generate® then X € Xy
satisfiesX |9; =0 fori = 1,...,r. SinceT is finite of dimensiorm + 1 over &, Xp has
dimensionN — r. K is not finite-dimensional ovek,, hence dimg, Le > dimy, Xy = oo.
Finally,
dimj(_) Xo = dlmﬁ Xo dimj(_) R

and the first factor on the right is finite. O

We remark that the function3g are the rational invariants img, y1, ..., y,—1 of the
differential system ovek. Also Lg consists of more than jugtoint symmetries, that is,
symmetries induced by transformations of the dependent and independent variables in a
differential equation. Characteristic symmetries, for example, are not point symmetries.
An example of a nonpoint, noncharacteristic symmetry1i, for the ideal generated by
dyo — y1dx and dvy — (y1) "t dx.

All that has been said so far pertains to the figldout it equally applies to extensions
and when we wish to emphasize this we will indicate the extension appropriately. Thus,
for example,

Lo(R1) = {X € &1T|LxO C K10}
From the definition of the Lie derivative,

Lyw = X|dw + d(X|w) 4)
it is apparent thafty is a ko-subalgebra of.g. Even better, we have the following.
Lemma 2.Xg < Lg.

Proof LetX € Xg andY € Lg then for any set of generating elemefits ©,

[X, Y]l6: = do:(X, Y) + Y(X|6:) — X(Y16;)

=Y[(X|do) — X(Y|6;).
But from the symmetry condition

Y| d9;, +d(Y|6) € ®

we obtainX [ (Y| do;) + X (Y |6;) = 0. O
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Recall that thedealizer, I(n), of a subalgebra of an algebrg; is the largest subalgebra
of g containingn in whichn is an ideal. We omit the proof of the following theorem which
gives an alternative definition of the Lie symmetry algebra.

Theorem 1.Lg = I(Xp).
Definition 3. The noncharacteristic Lie symmetry algebdd © is Sg = Lg/Xe.

The Lie algebraSeg has no well defined action a8 itself: if X; — X, € X it does not
follow that Lx,60 = Lx,0 in general. However, we do have the following generalization to
Se of standard theorems[10, 11].

Theorem 2 AssumeSg is finite-dimensional as afig vector space. If is a nontrivial
subalgebra o then there exists an ide@l, <® with noncharacteristic symmetry algebra
containing a subalgebra isomorphicli@) /n.

Proof. Associated withh is a subalgebra/ of Lg spanned, ovellg by noncharacteristic
vector fieldsX1, Xo, ..., X,. Let®, be the algebra ideal of, for which \ is characteristic.
So ®, < O, becauseYy < N. It is generated by one-form&, .1, 6,2, ..., 6,, with
Xi|0j=0fori=1,...,gandj=qg+1,...,r. We wish to show tha®, is a differential
ideal and that’x®, € ©, for X e V.

Extending the basis ad, to a &-basis of® we have:

d9i=2q:%j/\9.f+ Xr: N
=

j=q+1
and
q )4
Loty =3 ot D
k=1 k=q+1
where the coefficients in these relations all belongfo For i,/ = 1,...,4 and
j=gq+1,...,r the Lie derivative condition gives us

q
X L(XiLd6)) = 2ij X 6.

k=1
The left-hand side vanishes, by the definition of the d operator on one-forms and the fact
that \V is a subalgebra of.¢. Since the matrix with entrieX;|6;, [,k = 1....,q is of
rankg, we havexffj =0fork=1,...,q. Hence, the symmetries 6f in A/ actually leave
0, (setwise) invariant.
Since thenX; | d§; € ®,, the closure condition o® gives

q
D (Xilehor — (X [6)ak) € O, ()
k=1

For convenience, choose the bases such xhéd, = §;x. From the above we then
obtain

q
of = Z(Xi ERL mod®,,
k=1
so that we may write, foj = ¢ +1,..., p,

q
;= > (XileHe A6 mode,.
k=1
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But from (5) the coefficients, |_aJ’.‘ are symmetric i andk. Consequently &, C ©,,.

Finally, the noncharacteristic symmetry algebra®f is S, = I(NV)/N, the idealizer
being relative toT'. Becausdl(N) NI(X) is a subalgebra of(N) containing\, S, has
subalgebral(N)NI(X)) /N which is isomorphic td(n)/n, the idealizer here being relative
to Se. U

Thus, for a symmetry subalgebra there is a reduced system. In general there is no
simple relationship between the noncharacteristic Lie symmetry algebras of @lgal®.
Although Xy < Xg,, a Lie derivative which preserve® need not preserv®; or vice
versa.

We will need the following in a later section.

Lemma 3.An ideal, ®, of rank one with a noncharacteristic symmetry is generated by a
closed one-form.

Proof. Lets be the symmetry oB in Sg and let® be generated by over . We have
do =T A6
for I' a R-valued one-form. Consider the exterior derivative(ofd) 16 :

(s16)%d (9) = (s|0)do —d(s[0) A O
s|o
= (s|0)do + (s|dv) A O
=50 Ado)
which vanishes by the closure 6f. Clearlys|6 € & and the result follows. O

Locally and away from singularities we can find an integral for this closed form but it
will generally dwell in an extension of.

Theorem 3lf the single vector fields € So generates a subalgebsathen, in the context
of theorem 20 /0, has a closed generator.

Proof. This is the casey = 1 in theorem 2, s0®/®, has rank one as &-algebra,
generated by somg+ ®, with d@ =T’ A 6 mod®, by theorem 2. Now apply lemma 3.

3. The general linear equation of ordern

The theory of the previous section applies to quite general differential equations. We now
specialize to linear equations of the form
2" 4 a1 (02"t ay ()" P+ a1z +apz =0 (6)

where z/) is the jth differential coefficient of; anda;(x) belong tok. The associated
exterior differential ideal is generated ov&rby then one-formsf; = dyg — y;dx, 6, =
dyr — y2dx, ..., 6,1 = dy,2 — y_10x, 6, = dy,_1 + > g a;y; dx.

Let z1,z2,...,2, be a set of solutions to (6) which are linearly independent @ger
and letk; be a differential field extension of large enough to contain them, say the
Picard—\Vessiot extension [4]. Define associated vector field i

Xi = 2i0y, + zl?l)a},l +--+ z}”*l)ayn,l i=1...,n (7)

Note thatX;|6; are not zero irk; and soX; cannot be characteristic.
We replacef by K; in all the definitions and results of the previous section. The
following lemma and theorem are fundamental.

Lemma 4.The z; are linearly independent ovéi,.
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Proof. (This actually holds overR; as well.) Let) "  o;X; = 0. Then because
X;6; =z fori, j=1,...,n we have the: equations

Zaiz;[_l)zo j=1...,n

i=1
which have only a trivial solution by the nonvanishing of the Wronskian. O
Theorem 4.Sg is generated as alg-vector space by, Xo, ..., X,.

Proof. First, we show thak = >, «; X; € Se for o; € Jo. Thus, fork =1,...,n—1,
Lx,0 = —zF dx + dz* P = 0, whilst foré,,

n—1
EX,Q,, = — Zajzim dx — Zi(n) dx = O
j=0

Further, for f € R1, L;x60 = fLx0 + (X[6)df € © provided f € Je. In addition, if X
were characteristic we would haye’_, «;z; = 0 which contradicts the linear independence
of the z; by lemma 4.

Conversely, suppose = Zd, + Yody, + - - - + Y,—19,—1 € Le is noncharacteristic. Then
n — 1 of the symmetry conditions ofi are

d(Yl—Zy,+1)+Zdy,+1—Y,+1dx€® l:0,,n—2 (8)

Using instead, and without loss of generality, the homomorphic image iof Sg (so we
take Z = 0) we obtain

dY, — Y 1dx € © i=0,...,n—2

The remaining symmetry condition is
n—1
dy,_, — ZaiYi dx € ©.
i=0
We now show that these equations are a linear system of waaker the field of

invariants. We do this by replacing the dependence of th& by a dependence on certain
chosen invariants. Far=1, ..., n define

o oam ® oo o

1

Zl PR Zl_l yl Zl+1 .« o . Z;l )
I = )

o-y  _e-n 0-D -1

Zl “ e Zi_l yn—l Zi+l PR Zfln )

It is straightforward to check thaX(f;) = O for X € X and we may solve for the;
in terms of thel; overk;. Hence, we writeY; = Y;(x, I, ..., 1,) with d; € ®,Vi. As
functions ofx alone, we obtain

Yi,x—Y11=0 i=0...,n—2
n—1

Yu_1,x _ZaiYi =0
i=0

which are just the equations of the linear differential equation we started with, written in
system form. O
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The fact that theX; are Lie symmetries of theth-order linear equation is known in
the literature [12,13]. The significance of the above result is threefold. First, because the
X; are all point symmetries, it states that, for the linear equatiensty (generalized) Lie
symmetry is generated over the invariants by point symmetries modulo the characteristic
symmetries. Secondly, it gives a clear picture of the structur§gofor all values ofn.
Thirdly, it will allow us to exhibit the crucial role played by the intermediate extensigps,
etc, R — KR, — A1, to which subsets of invariants, or first integrals, of the system, belong.

Note thatSg is finite-dimensional as alg-vector space and infinite-dimensional dga
algebra. We emphasize this because ordinary differential equations have finite-dimensional
point symmetry algebras.

Note also that whereakg acts on®, Sg has no well-defined action on the whole of
©. But one easily sees that | dI; = §;; and that theX; commute. In fact theiSe acts in
a well-defined manner o\ = Je(dl1, ..., dl,), the subalgebra of invariant forms inside
0. /\ is the algebra of rational forms on andimensional manifold for whictsg is the
ring of derivations or tangent space. Of course, this is an object on which we would really
like to obtain a grip: the solution manifold. The are also the constants of integration or
first integrals familiar from elementary existence theory.

4. A result from differential algebra

When dealing with second-order equations in this section we willyseand p for x, yo
andy; and primes for derivatives with respect.to
Consider, for example, the simplest nontrivial case, the second-order eqtiatian =
0 for a € k. It can be verified [13], with a little labour, that the Lie point symmetry algebra
(X of the formn(x, y)d, + ¢ (x, ¥)dy + (¢« + (Cy —n.2)p — 1., p?)d,) OVerko, is generated
by the eight elements of; T
Ai = fide + 33f8y +3(f'y = fipa,  i=123
B = yzid, + y°2[0y + (pyz) — (p* + ayH)z)d,  i=1,2
Xi =29y + {9, i=12
D =yd, + po,
where f1, f> and f3 arekg-linearly independent solutions to the third-order equation,
f///+4af/+2a/f:0 (9)
andz; andz, areko-linearly independent solutions of the original second-order equation,
7" +az=0. (10)

In fact, the general solution of (9) is /@ quadratic form in the solutions of (10), so we

may takefi = z2, fo = z1z2 and f3 = z3.

Up to multiplication by an arbitrary element &f; there is one element ixy which
we take to be

X =0, + pd, —ayd,

and it is then easy to show that the elements of the Lie point symmetry algebra decompose,
overJg, in terms ofX, X; and X,. For example,

D = (yz; — pz0) X2 — (y25 — pz2) X1
Ar = 22X + (yz) — zp) X1
By = yuX — (yz1 — 210)°X2 — (21 — 21p) (v2h — 22p) X1
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etc.

By the result of theorem 4 we know that we do not need to worry about any other
possible (nonpoint) symmetries @f. The full noncharacteristic symmetry algebra of this
equation is therefore all vector fields of the form,

F1(Ih, I)(z10y + 210p) + Fa(I1, 12) (220 + 250)).

This is a large noncommutativg-algebra.
We will now study, for this example, noncharacteristic Lie symmetries with coefficients
in intermediate extension§,. Consider the following tower of fields:

kl = k(Z]_, ZZ)
|
ko = k{f1, f2, f3)

|
k

wherez; andz;, are linearly independent (ovép) solutions to (10),f1, f2 and f3 linearly

independent (oveky) solutions to (9) and the angle brackets denote the appropriate Picard—
Vessiot extensions. There is a corresponding tower of fields of invariants:
Jeo (A1)
|
Jeo(R2)
|
Je(R).
Lemma 5[Jg(R1) : Jo(R2)] = 2.
Proof. Writing y and p as functions offl; and/, overk;, as in the proof of theorem 2, and

using their invariance, we see tHa$ (R1) = ko(11, I). The &; invariants are a subfield of
this. But/?, I11, and 12 all belong toJe(R,). For instance,

12 = y%2 )2 — yp(d) + pP?

and since
2
27" = (D) — 2212) = (23" + 2az%

12 belongs to the differential fieltk(z2, z1z2, z3). Because the quadratic expressions in the
z's are linearly independent and solve the third-order equation, this iRjyst f2, f3) =
K. O

The symmetry algebra associated wifty, So(R2) is spanned overJg(R;) =
ko(I?, I11, 12) by D and A1, A, and As.
The symmetry algebrdg (K) contains at least the generator
D =yd, + pd, = —LX; — I1X;.
We apply theorem 2 to construct a closed idédl< ® using D. Thus, we may take
6, =dy — pdx and6, = pdy — ydp — (p? + ay®) dx. D is characteristic fol® = 86,
and

2
d@z = —01 A bo.
y

By theorem 2,0’ has as a noncharacteristic symmetry any element of the idealizer
in Se(R) of the subalgebra spanned . The general representation of the elements of
S¢(R1) given in theorem 4 is useful to identify this idealizer.
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To do this it is sufficient to solve the equation
[Ole + BXo, D] =yD

for o, B and y functions inkg(I1, I2). Up to the characteristic subspace we may take the
solution to bes(1? + 12)(—1,X1 + I1X2) which actually belongs tde(&2). Thus, if the
third-order equation (9) has a solutiofi,e K, we may use it to find a closed one-form
generating®’ as in lemma 3. An alternative form of this criterion is to be found in lemma 6
below.

Applying the proof of lemma 3, the integrating factor (6-1>X1 + I1X2)|62) ! =
(12 + 12)~* and hence

pdy — ydp — (p* +ay?) dx
IF 413

is closed. Away from singular points we may call if’dvhere F lives in a large enough
extension ofR. In fact,

I 2pf—yf/+y) (m)
=k+In|=-)=k+In{ ———"—— In{ >
d +n<12) +n<2pf—yf/—y +in 22

for k € ko where we have used the general foyin= z1z» to derive this result and have
expressed in terms of f, f’ and the ratiazy/zo.
The one-formy, is then anulled on the manifolds,

wu2pf —yf +y
22pf —yf —y
and on any such manifold,
1 ’
el:dy_(f+Z2+Z:l.> dx
2\ f  flz2—z1)
A trivial application of lemma 2, using the symmetB, then tells us to look at the closed
one-formé;/y which states thap belongs to a Liouville extension of a field containing the

ratio z1/z2. In the case we are considering, € k, it is easy to see th&t(%) is itself a
Liouville extension ofk because

(Zl>(” _la
22 fz

Hence we have, purely on the basis of the noncharacteristic Lie theory, the following
result.

Eko

Theorem 51f the third-order equatiorf”” +4af’+2a’ f = 0 has only one solution ik, up
to a factor inko, then the second-order equatigh+az = 0 defines a generalized Liouville
extension ofk.

Note that the condition that only one solution of the third-order equation be i
necessary; otherwise the extensiops, z2) is of finite degree ovek and algebraic rather
than Liouville.

This result is equivalent to theorem 6.4 of [4] by the following lemma.

Lemma 6.The Ricatti equatioy’ = ¢ + a has a solution in a quadratic extensionkoif
and only if the third-order equatiofi”” + 4af’ + 24’ f = 0 has a solution irt.
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Proof. Suppose the third-order equation has a solutiok.irCall it f = z1z, and define
11 = z1/z1, b = z5/z2. Thenty + 1 = (z1z2)'/(z122) € k. Also, we may obtain expressions
for z/, z/ andz in terms of ther;, a and its derivatives:

Zi, =17
7 = (22 + a)z
2/ = (63 + 5at; + d)z1.
The third-order equation then gives the algebraic relation,
6(t1 + 12)° — 12112(t1 + 1) + 12a(ty + 12) + 24’ = 0

from which r1, € k. Thus, the Ricatti equation has (a pair of) solutions in a quadratic
extension ofk.

Suppose, conversely, thdt= 1> 4+ a has a solution in such a quadratic extension, so
that

t?4+rt+s=0
for r ands in k. Froms, + o, = —r andsit, = s we obtain
1z1+ trzp = —r' z1+z2=1"/s.
Solving forz; andz, we find
sr’? 5%+ rr's
Coioay
which is ink. O

f=un=

Finally, we note that in the above example the noncharacteristic Lie symmetry algebra
of the second-order equation contains a subalgebra with coefficiehta/lnich is solvable.
It is this feature which allows us to conclude the integrability of the equation in a generalized
Liouville extension.

5. Conclusion

We have defined and used the noncharacteristic Lie symmetry algebra for a linear differential
equation to study the algebraic structure of the field extensions defined by its solutions.

Historically, Lie's theory for differential equations was a twin to the differential Galois
theory of Vessiot and Picard, later developed by Ritt [15] and Kolchin [14]. Modern
treatments are to be found in Kaplansky [4] and Magid [8]. Differential Galois theory,
in contrast to Lie's, was mainly developed for homogeneous, linear equations in a single
dependent variable and unlike the Lie theory, close attention is paid to the differential
field extensions to which the solutions belong. The coefficients of the equation are taken
to belong to a differential ground field. The differential Galois group is the group of
differential automorphisms of an extension, containing all the solutions, fixing the ground
field. As such, this group is an algebraic subgroup of a general linear group. The Lie
symmetry group of the general linear equation does not look like this; in particular it does
not fix the ground field of coefficients. Nevertheless, similar results concerning ‘solvablility’
hold for the differential Galois group.

In this paper we have looked at the Lie symmetry theory from an algebraic point of
view and have shown, by example, that this can lead to concrete results. However, the
machinery involved is (superficially, at least) to be distinguished from that of differential
Galois theory because the symmetry groups themselves are quite distinct in the two cases.
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There are two clear paths for further study: first, to develop the connection beSyeen

and the differential Galois group; secondly, to se&df for classes of nonlinear equation
has as natural and as useful a structure as is the case for linear equations.
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