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Abstract. We discuss the Lie symmetry approach to homogeneous, linear, ordinary differential
equations in an attempt to connect it with the algebraic theory of such equations. In particular,
we pay attention to the fields of functions over which the symmetry vector fields are defined and,
by defining a noncharacteristic Lie subalgebra of the symmetry algebra, are able to establish a
general description of all continuous symmetries. We use this description to rederive a classical
result on differential extensions for second-order equations.

1. Introduction

As a practical tool in the analysis of differential equations, particularly in the construction
of exact solutions, Lie symmetry algebras and groups play a prominent role. Thus, the
theory of special functions can be regarded as the representation theory of finite-dimensional
symmetry groups of the Laplace equation and other, integrable cases of Hamiltonian systems
on both finite- and infinite-dimensional spaces arise from more specialized, Hamiltonian
group actions, and there are countless applications to specific physical problems (see, for
example, [9, 10, 12]).

Lie point symmetries are continuous, one parameter Lie pseudogroups acting on the
space of dependent and independent variables, extended to the space of all derivatives,
which fix the variety defining the differential equation. They are generated by vector fields
which for a given equation, comprise a Lie algebra. Solvability of the associated Lie group
implies ‘solvability’ of the differential equation. The theory is applicable, in principle, to
any analytic class of differential equation.

One or two issues are not addressed in the classical theory outlined above. The first
is that there may be useful continuous, symmetries which are not generated by point
transformations. Such generalized, ‘dynamical’ or ‘hidden’ symmetries [13, 5, 11, 1, 3]
may not preserve the particular choice of derived variables. They are the fully geometric
symmetries of the equation.

A second issue is that of the function spaces to which the coefficients in the vector fields
belong and over which they form a Lie algebra. Clearly the size and dimensionality of the
symmetry algebra depend on these. Consider in this context the statement often quoted from
Lie [7] that the point symmetries of a second-order equation form an algebra of maximal
dimension eight and that, if this bound is achieved, the equation is linearizable. It is possible
that by restricting the coefficients of the symmetries to given differential fields, one may
find a rich structure within the symmetry algebra and be able to deduce, for instance, the
function class of the linearizing transformation. We will see in this paper that, for linear
equations, the symmetry algebra viewed in this way sheds light on the details of the solution
space.
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4640 C Athorne

In this paper we use an abstract definition of symmetry framed in terms of exterior
differential ideals over specified differential fields. This definition is too broad because it
includes, within the symmetry algebra, an infinite-dimensional characteristic subalgebra of
generalized symmetries which are, in practical terms, not useful. We are able to factorize
this out to obtain the noncharacteristic symmetry algebra,S2, for the ideal2. This algebra
is, in general, infinite-dimensional over a specified field of constants but is also a vector
space over the field of invariants of the characteristic subalgebra over which it may be
finite-dimensional. We give the usual type of results about reducibility in terms of certain
ideals contained in2.

For a large enough extension of a differential field we then present a complete description
of S2 for the general linear, homogeneous equation of degreen. This is an infinite-
dimensional algebra, over the field of constants, which is a finite-dimensional vector space
over the invariants. The description is both natural and useful as we show in going on to
apply it to the general second-order equation where we rederive a result from differential
algebra.

We should emphasize that the noncharacteristic symmetry algebra is not the point
symmetry algebra. Although it does contain a homomorphic image of the latter, it is
both larger and has a much simpler structure. Part of our motivation in studying it is to
understand the algebraic theory of differential field extensions using Lie symmetry.

For an introduction to the theory and some results of exterior differential algebra the
reader might consult [2].

2. Definitions and fundamental results

Let k0 be the (algebraically closed) field of constants of the zero characteristic differential
field k with single derivation denoted by∂x . We denote extensions involving only this
derivation byk1, k2, etc. We denote byK = k[y0, y1, . . . , yn−1] the differential polynomial
ring in the variablesy0, y1, . . . , yn−1 with commuting derivations∂x, ∂0, ∂1, . . . , ∂n−1

satisfying∂i(yj ) = δij . Likewise,K1 = k1[y0, y1, . . . , yn−1] etc. The derivations on these
rings extend to their fields of fractionsK = k(y0, y1, . . . , yn−1), K1 = k1(y0, y1, . . . , yn−1),
etc.

Let
∧

be the exterior differential algebra of differential forms of nonzero weight overK.
It is generated as a (finite-dimensional)K-vector space by one-forms dx, dy0, dy1, . . . ,dyn−1.
T will be the correspondingK-vector space of vector fields, that is, derivations ofK. Note
that

∧
is a K-algebra under exterior multiplication whereasT is only a k0-algebra under

the Lie bracket of vector fields. When we wish to talk about forms or vector fields with
coefficients in one of the field extensions we will write, for example,K1

∧
andK1T .

Let 2 be a differential ideal in
∧

. That is, in addition to being a ring ideal we have
d2 ⊆ 2. We writeA E B(AGB) whenA is a (proper) differential ideal ofB. We use6 (<)
similarly for (proper) vector subspaces. For the purposes of this paper we assume that2 is
finitely generated by one-formsθ1, θ2, . . . , θr , linearly independent overK in an open subset
of Cn+1, which is certainly the case for ideals associated with ordinary differential systems
away from singular points.r is the rank of 2. Thus, there exist elements (one-forms)
0
j

i ∈
∧

such that,

dθi =
r∑

j=1

0
j

i ∧ θj i = 1, . . . , r. (1)

This is the Frobenius integrability condition.
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With the differential ideal2 we associate twok0-subalgebras ofT , the Lie symmetry
algebra,L2, and the characteristic algebra,X2. LX is the Lie derivative operator.

Definition 1. The Lie symmetry algebraof 2 in T is

L2 = {X ∈ T |LX2 ⊆ 2}.
Definition 2. The characteristic algebraof 2 in T is

X2 = {X ∈ T |Xb2 ⊂ 2}.
It is evident that these are indeedk0 algebras from the relations,

L[X,Y ] = [LX,LY ] (2)

[X, Y ]bθ = X(Y bθ)− Y (Xbθ)− dθ(X, Y ) (3)

θ being any one-form in2 and the closure condition (1). If we denote byI2 the set
{f ∈ K|X(f ) = 0, ∀X ∈ X2}, thenL2 is a k0-algebra but anI2-vector space. Likewise,
X2 is a K vector space and also has anI2-algebra structure. The following lemma gives
some results on thek0, K andI2 dimensions of these algebras or vector spaces.

Lemma 1.For a K-vector space,χ2 is finite-dimensional. Fork0-algebras,L2 and X2
are infinite-dimensional. For anI2-algebra,X2 is finite-dimensional if and only ifK is
algebraic overI2.

Proof. If the K-linearly independent elementsθ1, θ2, . . . , θr generate2 then X ∈ X2
satisfiesXbθi = 0 for i = 1, . . . , r. SinceT is finite of dimensionn + 1 overK, X2 has
dimensionN − r. K is not finite-dimensional overk0, hence dimk0 L2 > dimk0 X2 = ∞.
Finally,

dimI2 X2 = dimK X2 dimI2 K

and the first factor on the right is finite. �
We remark that the functionsI2 are the rational invariants iny0, y1, . . . , yn−1 of the

differential system overk. Also L2 consists of more than justpoint symmetries, that is,
symmetries induced by transformations of the dependent and independent variables in a
differential equation. Characteristic symmetries, for example, are not point symmetries.
An example of a nonpoint, noncharacteristic symmetry isy1∂y1 for the ideal generated by
dy0− y1 dx and dy1− (y1)

−1 dx.
All that has been said so far pertains to the fieldK, but it equally applies to extensions

and when we wish to emphasize this we will indicate the extension appropriately. Thus,
for example,

L2(K1) = {X ∈ K1T |LX2 ⊆ K12}.
From the definition of the Lie derivative,

LXω = Xb dω + d(Xbω) (4)

it is apparent thatX2 is a k0-subalgebra ofL2. Even better, we have the following.

Lemma 2.X2 E L2.

Proof. Let X ∈ X2 andY ∈ L2 then for any set of generating elementsθi ∈ 2,

[X, Y ]bθi = dθi(X, Y )+ Y (Xbθi)−X(Y bθi)
= Y b(Xb dθi)−X(Y bθi).

But from the symmetry condition

Y b dθi + d(Y bθi) ∈ 2
we obtainXb(Y b dθi)+X(Y bθi) = 0. �
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Recall that theidealizer, I(n), of a subalgebran of an algebrag is the largest subalgebra
of g containingn in which n is an ideal. We omit the proof of the following theorem which
gives an alternative definition of the Lie symmetry algebra.

Theorem 1.L2 = I(X2).
Definition 3. The noncharacteristic Lie symmetry algebraof 2 is S2 = L2/X2.

The Lie algebraS2 has no well defined action on2 itself: if X1−X2 ∈ X2 it does not
follow that LX1θ = LX2θ in general. However, we do have the following generalization to
S2 of standard theorems[10, 11].

Theorem 2.AssumeS2 is finite-dimensional as anI2 vector space. Ifn is a nontrivial
subalgebra ofS2 then there exists an ideal2n G2 with noncharacteristic symmetry algebra
containing a subalgebra isomorphic toI(n)/n.

Proof. Associated withn is a subalgebraN of L2 spanned, overI2 by noncharacteristic
vector fieldsX1, X2, . . . , Xq . Let2n be the algebra ideal of

∧
for whichN is characteristic.

So 2n 6 2, becauseX2 6 N . It is generated by one-formsθq+1, θq+2, . . . , θr , with
Xibθj = 0 for i = 1, . . . , q andj = q+1, . . . , r. We wish to show that2n is a differential
ideal and thatLX2n ⊆ 2n for X ∈ N .

Extending the basis of2n to a K-basis of2 we have:

dθi =
q∑
j=1

α
j

i ∧ θj +
r∑

j=q+1

β
j

i ∧ θj

and

LXi θj =
q∑
k=1

λkij θk +
p∑

k=q+1

µkij θk

where the coefficients in these relations all belong to
∧

. For i, l = 1, . . . , q and
j = q + 1, . . . , r the Lie derivative condition gives us

Xlb(Xib dθj ) =
q∑
k=1

λijXlbθk.

The left-hand side vanishes, by the definition of the d operator on one-forms and the fact
thatN is a subalgebra ofL2. Since the matrix with entriesXlbθk, l, k = 1. . . . , q is of
rankq, we haveλkij = 0 for k = 1, . . . , q. Hence, the symmetries of2 in N actually leave
2n (setwise) invariant.

Since thenXib dθj ∈ 2n, the closure condition on2 gives
q∑
k=1

((Xibαkj )θk − (Xibθk)αkj ) ∈ 2n. (5)

For convenience, choose the bases such thatXibθk = δik. From the above we then
obtain

αij =
q∑
k=1

(Xibαkj )θk mod2n

so that we may write, forj = q + 1, . . . , p,

dθj =
q∑

l,k=1

(Xlbαkj )θk ∧ θl mod2n.
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But from (5) the coefficientsXlbαkj are symmetric inl andk. Consequently d2n ⊆ 2n.
Finally, the noncharacteristic symmetry algebra of2n is Sn = I(N )/N , the idealizer

being relative toT . BecauseI(N ) ∩ I(X ) is a subalgebra ofI(N ) containingN , Sn has
subalgebra(I(N )∩I(X ))/N which is isomorphic toI(n)/n, the idealizer here being relative
to S2. �

Thus, for a symmetry subalgebra there is a reduced system. In general there is no
simple relationship between the noncharacteristic Lie symmetry algebras of ideals21 G2.
Although X2 < X21, a Lie derivative which preserves2 need not preserve21 or vice
versa.

We will need the following in a later section.

Lemma 3.An ideal,2, of rank one with a noncharacteristic symmetry is generated by a
closed one-form.

Proof. Let s be the symmetry of2 in S2 and let2 be generated byθ over K. We have

dθ = 0 ∧ θ
for 0 a K-valued one-form. Consider the exterior derivative of(sbθ)−1θ :

(sbθ)2d

(
θ

sbθ
)
= (sbθ) dθ − d(sbθ) ∧ θ
= (sbθ) dθ + (sb dθ) ∧ θ
= sb(θ ∧ dθ)

which vanishes by the closure of2. Clearly sbθ ∈ K and the result follows. �
Locally and away from singularities we can find an integral for this closed form but it

will generally dwell in an extension ofK.

Theorem 3.If the single vector fields ∈ S2 generates a subalgebran then, in the context
of theorem 2,2/2n has a closed generator.

Proof. This is the caseq = 1 in theorem 2, so2/2n has rank one as aK-algebra,
generated by someθ +2n with dθ = 0 ∧ θ mod2n by theorem 2. Now apply lemma 3.

3. The general linear equation of ordern

The theory of the previous section applies to quite general differential equations. We now
specialize to linear equations of the form

z(n) + an−1(x)z
(n−1) + an−2(x)z

(n−2) + · · · + a1z
(1) + a0z = 0 (6)

where z(j) is the j th differential coefficient ofz and ai(x) belong tok. The associated
exterior differential ideal is generated overK by then one-formsθ1 = dy0 − y1 dx, θ2 =
dy1− y2 dx, . . . , θn−1 = dyn−2− yn−1 dx, θn = dyn−1+

∑n−1
i=0 aiyi dx.

Let z1, z2, . . . , zn be a set of solutions to (6) which are linearly independent overk0

and let k1 be a differential field extension ofk large enough to contain them, say the
Picard–Vessiot extension [4]. Define associated vector fields inK1T ,

Xi = zi∂y0 + z(1)i ∂y1 + · · · + z(n−1)
i ∂yn−1 i = 1, . . . , n. (7)

Note thatXjbθi are not zero ink1 and soXi cannot be characteristic.
We replaceK by K1 in all the definitions and results of the previous section. The

following lemma and theorem are fundamental.

Lemma 4.The zi are linearly independent overI2.
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Proof. (This actually holds overK1 as well.) Let
∑n

i=1 αiXi = 0. Then because
Xjbθi = z(i−1)

j , for i, j = 1, . . . , n we have then equations

n∑
i=1

αiz
(i−1)
j = 0 j = 1, . . . , n

which have only a trivial solution by the nonvanishing of the Wronskian. �

Theorem 4.S2 is generated as anI2-vector space byX1, X2, . . . , Xn.

Proof. First, we show thatX =∑n
i=1 αiXi ∈ S2 for αi ∈ I2. Thus, fork = 1, . . . , n− 1,

LXi θk = −z(k)i dx + dz(k−1)
i = 0, whilst for θn,

LXi θn = −
n−1∑
j=0

ajz
(j)

i dx − z(n)i dx = 0.

Further, forf ∈ K1, LfXθ = fLXθ + (Xbθ) df ∈ 2 providedf ∈ I2. In addition, ifX
were characteristic we would have

∑n
i=1 αizi = 0 which contradicts the linear independence

of the zi by lemma 4.
Conversely, supposeS = Z∂x+Y0∂y0+· · ·+Yn−1∂n−1 ∈ L2 is noncharacteristic. Then

n− 1 of the symmetry conditions onS are

d(Yi − Zyi+1)+ Z dyi+1− Yi+1 dx ∈ 2 i = 0, . . . , n− 2. (8)

Using instead, and without loss of generality, the homomorphic image ofX in S2 (so we
takeZ = 0) we obtain

dYi − Yi+1 dx ∈ 2 i = 0, . . . , n− 2.

The remaining symmetry condition is

dYn−1−
n−1∑
i=0

aiYi dx ∈ 2.

We now show that these equations are a linear system of rankn over the field of
invariants. We do this by replacing theyi dependence of theYi by a dependence on certain
chosen invariants. Fori = 1, . . . , n define

Ii =

∣∣∣∣∣∣∣∣
z1 · · · zi−1 y0 zi+1 · · · zn
z
(1)
1 · · · z

(1)
i−1 y1 z

(1)
i+1 · · · z(1)n

...
. . .

...
...

...
. . .

...

z
(n−1)
1 · · · z

(n−1)
i−1 yn−1 z

(n−1)
i+1 · · · z(n−1)

n

∣∣∣∣∣∣∣∣ .
It is straightforward to check thatX(Ii) = 0 for X ∈ X2 and we may solve for theyi
in terms of theIi over k1. Hence, we writeYi = Yi(x, I1, . . . , In) with dIi ∈ 2, ∀i. As
functions ofx alone, we obtain

Yi,x −Yi+1 = 0 i = 0, . . . , n− 2

Yn−1,x −
n−1∑
i=0

aiYi = 0

which are just the equations of the linear differential equation we started with, written in
system form. �
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The fact that theXi are Lie symmetries of thenth-order linear equation is known in
the literature [12, 13]. The significance of the above result is threefold. First, because the
Xi are all point symmetries, it states that, for the linear equations,every (generalized) Lie
symmetry is generated over the invariants by point symmetries modulo the characteristic
symmetries. Secondly, it gives a clear picture of the structure ofS2 for all values ofn.
Thirdly, it will allow us to exhibit the crucial role played by the intermediate extensions,K2

etc,K→ K2→ K1, to which subsets of invariants, or first integrals, of the system, belong.
Note thatS2 is finite-dimensional as anI2-vector space and infinite-dimensional as ak0-

algebra. We emphasize this because ordinary differential equations have finite-dimensional
point symmetry algebras.

Note also that whereasL2 acts on2, S2 has no well-defined action on the whole of
2. But one easily sees thatXib dIj = δij and that theXi commute. In fact thenS2 acts in

a well-defined manner oñ
∧ = I2〈dI1, . . . ,dIn〉, the subalgebra of invariant forms inside

2.
∧̃

is the algebra of rational forms on ann-dimensional manifold for whichS2 is the
ring of derivations or tangent space. Of course, this is an object on which we would really
like to obtain a grip: the solution manifold. TheIi are also the constants of integration or
first integrals familiar from elementary existence theory.

4. A result from differential algebra

When dealing with second-order equations in this section we will usex, y andp for x, y0

andy1 and primes for derivatives with respect tox.
Consider, for example, the simplest nontrivial case, the second-order equationz′′+az =

0 for a ∈ k. It can be verified [13], with a little labour, that the Lie point symmetry algebra
(X of the formη(x, y)∂x + ζ(x, y)∂y + (ζ,x + (ζ,y − η,x)p− η,yp2)∂p) overk0, is generated
by the eight elements ofK1T :

Ai = fi∂x + 1
2yf

′
i ∂y + 1

2(f
′′
i y − f ′i p)∂p i = 1, 2, 3

Bi = yzi∂x + y2z′i∂y + (pyz′i − (p2+ ay2)zi)∂p i = 1, 2

Xi = zi∂y + z′i∂p i = 1, 2

D = y∂y + p∂p
wheref1, f2 andf3 arek0-linearly independent solutions to the third-order equation,

f ′′′ + 4af ′ + 2a′f = 0 (9)

andz1 andz2 arek0-linearly independent solutions of the original second-order equation,

z′′ + az = 0. (10)

In fact, the general solution of (9) is ak0 quadratic form in the solutions of (10), so we
may takef1 = z2

1, f2 = z1z2 andf3 = z2
2.

Up to multiplication by an arbitrary element ofK1 there is one element inX2 which
we take to be

X = ∂x + p∂y − ay∂p
and it is then easy to show that the elements of the Lie point symmetry algebra decompose,
over I2, in terms ofX,X1 andX2. For example,

D = (yz′1− pz1)X2− (yz′2− pz2)X1

A1 = z2
1X + (yz′1− z1p)X1

B1 = yz1X − (yz′1− z1p)
2X2− (yz′1− z1p)(yz

′
2− z2p)X1
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etc.
By the result of theorem 4 we know that we do not need to worry about any other

possible (nonpoint) symmetries of2. The full noncharacteristic symmetry algebra of this
equation is therefore all vector fields of the form,

F1(I1, I2)(z1∂y + z′1∂p)+ F2(I1, I2)(z2∂y + z′2∂p).
This is a large noncommutativek0-algebra.

We will now study, for this example, noncharacteristic Lie symmetries with coefficients
in intermediate extensionsK2. Consider the following tower of fields:

k1 = k〈z1, z2〉
|
k2 = k〈f1, f2, f3〉
|
k

wherez1 andz2 are linearly independent (overk0) solutions to (10),f1, f2 andf3 linearly
independent (overk0) solutions to (9) and the angle brackets denote the appropriate Picard–
Vessiot extensions. There is a corresponding tower of fields of invariants:

I2(K1)

|
I2(K2)

|
I2(K).

Lemma 5.[I2(K1) : I2(K2)] = 2.

Proof. Writing y andp as functions ofI1 andI2 overk1, as in the proof of theorem 2, and
using their invariance, we see thatI2(K1) = k0(I1, I2). TheK2 invariants are a subfield of
this. But I 2

1 , I1I2 andI 2
2 all belong toI2(K2). For instance,

I 2
2 = y2z′1

2− yp(z2
1)
′ + p2z2

1

and since

2z′1
2 = (z2

1)
′′ − 2z1z

′′
1 = (z2

1)
′′ + 2az2

1

I 2
2 belongs to the differential fieldK〈z2

1, z1z2, z
2
2〉. Because the quadratic expressions in the

z’s are linearly independent and solve the third-order equation, this is justK〈f1, f2, f3〉 =
K2. �

The symmetry algebra associated withK2, S2(K2) is spanned overI2(K2) =
k0(I

2
1 , I1I2, I

2
2 ) by D andA1, A2 andA3.

The symmetry algebraS2(K) contains at least the generator

D = y∂y + p∂p = −I2X2− I1X1.

We apply theorem 2 to construct a closed ideal2′ G 2 using D. Thus, we may take
θ1 = dy − p dx and θ2 = p dy − y dp − (p2 + ay2) dx. D is characteristic for2′ = Kθ2

and

dθ2 = 2

y
θ1 ∧ θ2.

By theorem 2,2′ has as a noncharacteristic symmetry any element of the idealizer
in S2(K) of the subalgebra spanned byD. The general representation of the elements of
Sθ (K1) given in theorem 4 is useful to identify this idealizer.
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To do this it is sufficient to solve the equation

[αX1+ βX2,D] = γD
for α, β andγ functions ink0(I1, I2). Up to the characteristic subspace we may take the
solution to beδ(I 2

1 + I 2
2 )(−I2X1 + I1X2) which actually belongs toS2(K2). Thus, if the

third-order equation (9) has a solution,f ∈ K, we may use it to find a closed one-form
generating2′ as in lemma 3. An alternative form of this criterion is to be found in lemma 6
below.

Applying the proof of lemma 3, the integrating factor is((−I2X1 + I1X2)bθ2)
−1 =

(I 2
1 + I 2

2 )
−1 and hence

p dy − y dp − (p2+ ay2) dx

I 2
1 + I 2

2

is closed. Away from singular points we may call it dF whereF lives in a large enough
extension ofK. In fact,

F = k + ln

(
I1

I2

)
= k + ln

(
2pf − yf ′ + y
2pf − yf ′ − y

)
+ ln

(
z1

z2

)
for k ∈ k0 where we have used the general formf = z1z2 to derive this result and have
expressedF in terms off , f ′ and the ratioz1/z2.

The one-formθ2 is then anulled on the manifolds,

z1

z2

2pf − yf ′ + y
2pf − yf ′ − y ∈ k0

and on any such manifold,

θ1 = dy − 1

2

(
f ′

f
+ z2+ z1

f (z2− z1)

)
dx.

A trivial application of lemma 2, using the symmetryD, then tells us to look at the closed
one-formθ1/y which states thaty belongs to a Liouville extension of a field containing the
ratio z1/z2. In the case we are considering,f ∈ k, it is easy to see thatk〈 z1

z2
〉 is itself a

Liouville extension ofk because(
z1

z2

)(1)
= 1

f

z1

z2
.

Hence we have, purely on the basis of the noncharacteristic Lie theory, the following
result.

Theorem 5.If the third-order equationf ′′′ +4af ′ +2a′f = 0 has only one solution ink, up
to a factor ink0, then the second-order equationz′′ +az = 0 defines a generalized Liouville
extension ofk.

Note that the condition that only one solution of the third-order equation be ink is
necessary; otherwise the extensionk〈z1, z2〉 is of finite degree overk and algebraic rather
than Liouville.

This result is equivalent to theorem 6.4 of [4] by the following lemma.

Lemma 6.The Ricatti equationφ′ = φ2 + a has a solution in a quadratic extension ofk if
and only if the third-order equationf ′′′ + 4af ′ + 2a′f = 0 has a solution ink.
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Proof. Suppose the third-order equation has a solution ink. Call it f = z1z2 and define
t1 = z′1/z1, t2 = z′2/z2. Then t1 + t2 = (z1z2)

′/(z1z2) ∈ k. Also, we may obtain expressions
for z′i , z

′′
i andz′′i in terms of theti , a and its derivatives:

z′i = tizi
z′′i = (2t2i + a)zi
z′′′i = (6t3i + 5ati + a′)z1.

The third-order equation then gives the algebraic relation,

6(t1+ t2)3− 12t1t2(t1+ t2)+ 12a(t1+ t2)+ 2a′ = 0

from which t1t2 ∈ k. Thus, the Ricatti equation has (a pair of) solutions in a quadratic
extension ofk.

Suppose, conversely, thatt ′ = t2 + a has a solution in such a quadratic extension, so
that

t2+ rt + s = 0

for r ands in k. From t1+ t2 = −r and t1t2 = s we obtain

t1z1+ t2z2 = −r ′ z1+ z2 = s ′/s.
Solving for z1 andz2 we find

f = z1z2 = sr ′2+ s ′2+ rr ′s ′
s(r2− 4s)

which is in k. �
Finally, we note that in the above example the noncharacteristic Lie symmetry algebra

of the second-order equation contains a subalgebra with coefficients ink which is solvable.
It is this feature which allows us to conclude the integrability of the equation in a generalized
Liouville extension.

5. Conclusion

We have defined and used the noncharacteristic Lie symmetry algebra for a linear differential
equation to study the algebraic structure of the field extensions defined by its solutions.

Historically, Lie’s theory for differential equations was a twin to the differential Galois
theory of Vessiot and Picard, later developed by Ritt [15] and Kolchin [14]. Modern
treatments are to be found in Kaplansky [4] and Magid [8]. Differential Galois theory,
in contrast to Lie’s, was mainly developed for homogeneous, linear equations in a single
dependent variable and unlike the Lie theory, close attention is paid to the differential
field extensions to which the solutions belong. The coefficients of the equation are taken
to belong to a differential ground field. The differential Galois group is the group of
differential automorphisms of an extension, containing all the solutions, fixing the ground
field. As such, this group is an algebraic subgroup of a general linear group. The Lie
symmetry group of the general linear equation does not look like this; in particular it does
not fix the ground field of coefficients. Nevertheless, similar results concerning ‘solvablility’
hold for the differential Galois group.

In this paper we have looked at the Lie symmetry theory from an algebraic point of
view and have shown, by example, that this can lead to concrete results. However, the
machinery involved is (superficially, at least) to be distinguished from that of differential
Galois theory because the symmetry groups themselves are quite distinct in the two cases.
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There are two clear paths for further study: first, to develop the connection betweenS2
and the differential Galois group; secondly, to see ifS2 for classes of nonlinear equation
has as natural and as useful a structure as is the case for linear equations.
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